day12 function 3 + iterator and Generator + module

Function 3

1, Advanced usage of map
map
 Create a new sequence by specifying rules for the elements in one or more sequences
map(function,sequence) -----Converts elements in a sequence into elements in a new sequence by specifying rules
 Function requirements: there is only one parameter -----Points to each element in the subsequent sequence
        There is a return value -----Elements in the new sequence (use parameters to represent the elements in the original sequence and describe the relationship between the new sequence elements and the original sequence elements)
map(function,Sequence 1,Sequence 2) -----Convert the elements in two sequences into elements in a new sequence through the rules specified by the function
 Function requirements: there are only two parameters -----Point to the elements in the next two sequences respectively
		There is a return value -----Elements in the new sequence (use parameters to represent the elements in the original sequence and describe the relationship between the new sequence elements and the original sequence elements)

When there are multiple sequences, the processing is the same as that of two sequences

eg:

nums = [84, 72, 67, 90, 31]
# Get number of digits
# Derivation
new_nums = [i % 10 for i in nums]
print(new_nums)

# map
new_nums = list(map(lambda x: x % 10, nums))
print(new_nums)

# Processing of two sequences of map
num1 = [23, 8, 90, 2]
num2 = [9, 89, 7, 23]
# [32,97,97,25]
new_nums = list(map(lambda x, y: x + y, num1, num2))
print(new_nums)

nums = [23, 8, 90, 2]
# Derivation
print([i * 10 for i in nums])
# map
print(list(map(lambda i: i * 10, nums)))
# Exercise 4: given two lists of numbers, create a new sequence with the number of elements in the first list as ten digits and the number of elements in the second list as single digits
num1 = [23, 8, 914, 2]
num2 = [9, 89, 7, 231]
# new_num=[39,89,47,21]
print(list(map(lambda x, y: (x % 10) * 10 + y % 10, num1, num2)))

# Exercise 5: given that the two lists are student names and ages, create a list that holds multiple student information
# [{name ':' Xiao Ming ',' age ': 18}, {name': 'Zhang San', 'age': 21}, {name ':' Li Si ',' age ': 22}, {name': 'Lao Wang', 'age': 19}]
names = ['Xiao Ming', 'Zhang San', 'Li Si', 'Lao Wang']
ages = [18, 21, 22, 19]
print(list(map(lambda x, y: {'name': x, 'age': y}, names, ages)))
2, Advanced usage of reduce
reduce ----Merge the elements in the sequence into one data according to the specified rules
reduce(function,sequence,Initial value)
Function requirements: there are only two parameters -----The first parameter points to the initial value, and the second parameter points to each element in the sequence
        Return value -----Merge method (merge by observing the operation of elements and initial values)

eg:

# Sum of all elements > 118
nums = [10, 20, 32, 56]
print(reduce(lambda x, y: y + x, nums, 0))
# Multiplication of all elements > 480
nums = [2, 3, 8, 10]
print(reduce(lambda x, y: x * y, nums, 1))
# Merge elements in nums > 23810
nums = [2, 3, 8, 10]
print(reduce(lambda x, y: x + str(y), nums, ''))
# Exercise 3: merge the elements in names - > 'Xiao Zhang, Li Lao'
names = ['Xiao Ming', 'Zhang San', 'Li Si', 'Lao Wang']
print(reduce(lambda x, y: x + y[0], names, ''))

# Exercise 4: sum all elements in nums according to the value - > 140
nums = [10, '12', 12.5, '5.5']
print(reduce(lambda x, y: x + float(y), nums, 0))

# Exercise 5: sum all numeric data in nums - > 12 + 100 + 10.5 - > 122.5
# Two methods: using derivation and not using derivation
nums = [12, 'abc', '12.5', 100, 10.5]

print(reduce(lambda x, y: x + y, [i for i in nums if type(i) in (int, float)], 0))

print(reduce(lambda x, y: x + (y if type(y) in (int, float) else 0), nums, 0))

# Exercise 6: know a list of students
students = [
    {'name': 'Xiao Ming', 'age': 18, 'math': 90, 'chinese': 85, 'English': 60},
    {'name': 'stu1', 'age': 22, 'math': 83, 'chinese': 80, 'English': 30},
    {'name': 'stu2', 'age': 30, 'math': 67, 'chinese': 93, 'English': 87},
    {'name': 'stu3', 'age': 19, 'math': 55, 'chinese': 76, 'English': 69},
    {'name': 'stu4', 'age': 17, 'math': 79, 'chinese': 80, 'English': 90}
]
# 1) Seek the average score of class Chinese score
print(reduce(lambda x, y: x + y['chinese'] / len(students), students, 0))

# 2) Sort the list from large to small according to the average score of students
print(sorted(students, key=lambda x: (x['math'] + x['chinese'] + x['English']) / 3, reverse=True))

# 3) Associate the data in address to each student in turn
address = ['Chongqing', 'Chengdu', 'Beijing', 'Kunming', 'Shenzhen']


def temp(stu, addr):
    stu['address'] = addr
    return stu


print(list(map(temp, students, address)))

Function ---- customize comparison rules (how to compare when determining the size of comparison elements)

There is and only one parameter ---- representing each element in the sequence

There is a return value that determines the comparison rule

3, The essence of function

A function is a variable

To define a function in python is actually to define a variable whose type is function, and the function name is the variable name

variable=lambda Parameter list: return value

def Variables (parameter list):
    Function body
    return Return value

eg:

def b():
    print('Hello function')
    return


c1 = b  # c1 function of assigned function
print(c1)  # Hello function

c2 = b()  # c2 is the return value of the function
print(c2)  # None

iterator

1, What is an iter ator
Iterators are container data types -----It can be traversed or converted into lists or tuples

The print iterator cannot view elements and cannot count the number of elements in the iterator

If you want to get the element of the iterator, you must take the element out of the iterator. Once the element is taken out, the element does not exist in the iterator and cannot be added again
2, Create iterator
# Method 1: use iter to convert other sequences to iterators (any sequence can be converted to iterators)
iter1 = iter('hello')
iter2 = iter([1, 2, 3, 4, 5, 6])
iter3 = iter({3, 5, 4, 7})
iter4 = iter({'name': 'Xiao Hong', 'age': 18})
print(type(iter1))  # <class 'str_iterator'>
print(iter2)  # Cannot view element < list_ iterator object at 0x0000028BEE2E6EC8>
# print(len(iter3))  # Cannot count the number of typeerrors: object of type 'set'_ iterator' has no len()

# Method 2: create a generator

# 3. Gets the element of the iterator
# No matter how the element of the iterator is obtained, the obtained element must disappear from the iterator
3, Gets the element of the iterator

Note: no matter how the element of the iterator is obtained, the obtained element must disappear from the iterator

1)Get a single element
next(iterator ):Gets the topmost element in the iterator each time
2)ergodic
for variable in Iterator:
    Circulatory body

eg:

print(next(iter3))  # 3
print(next(iter3))  # 4
print(next(iter3))  # 5
print(next(iter3))  # 7
# print(next(iter3))  # Error StopIteration exceeded

for i in iter4:
    print(i)

generator

1, What is a generator
A generator is a container -----It can be traversed or converted into lists, elements, etc

Instead of saving multiple data, it is an algorithm that generates multiple data

The generator has all the characteristics of iterators: elements cannot be seen in printing, the number of elements cannot be counted, and once elements are obtained, the corresponding elements will disappear from the generator
2, Create generator
Call a with yield Keyword function can get a generator

If an ordinary function is called, the function body will be executed when calling the function, and the return value of the function will be obtained

If the body of the calling function has yield,When calling a function, the function body will not be executed, and the function value will not be obtained. What you get is a generator

eg:

def func1():
    yield  # Keyword for generator
    print('=====')
    print('-----')
    return 100


result = func1()
print(result)  # <generator object func1 at 0x0000026CE9AF5148>
3, Control the number and value of data generated by the generator
How many data can be generated by the generator, and what data can be generated by the function body of the function called when the generator is created,
Encountered several times during execution yield,And every time yield When I was young yield The following values determine

eg:

def func2():
    print('====')
    yield 1
    print('++++')
    yield 2
    return 100  # End the function body when return is encountered
    yield 3


gent1 = func2()
print(list(gent1))


def func3():
    for i in range(1, 4):
        i *= 100
        yield i


gent2 = func3()
# A generator
# print(next(gent2))  # 100
# print(next(gent2))  # 200
# print(next(gent2))  # 300
# print(next(gent2))  # report errors
# Three generators
print(next(func3()))  # 100
print(next(func3()))  # 100
print(next(func3()))  # 100
4, How the generator generates data

It is equivalent to printing the previous value and yield value when the yield stop is encountered during the execution of the function

The next execution starts after the first yield and ends at the next yield

If return is encountered, the function body ends

eg:

Exercise 1: write a function to create Python Student ID generator
# 'python001','python002',.... 'python999'
def python_id():
    for i in range(1, 1000):
        if i < 10:
            yield 'python00' + str(i)
        elif 10 <= i < 100:
            yield 'python0' + str(i)
        else:
            yield 'python' + str(i)


stu_id = python_id()
print(list(stu_id))


# Exercise 2: write a function to create a generator for the student number of students in a specified subject
# python   ->  'python001','python002',.... 'python999'
# java     ->   'java001','java002',.... 'java999'

def stu_id_1(class_name):
    if class_name == 'java':
        for i in range(1, 1000):
            if i < 10:
                yield 'java00' + str(i)
            elif 10 <= i < 100:
                yield 'java0' + str(i)
            else:
                yield 'java' + str(i)
    elif class_name == 'python':
        for i in range(1, 1000):
            if i < 10:
                yield 'python00' + str(i)
            elif 10 <= i < 100:
                yield 'python0' + str(i)
            else:
                yield 'python' + str(i)


stu_id = stu_id_1('java')
print(list(stu_id))

Use of modules

1, What is a module

A py file is a module, and the module name is the file name of the PY file

2, How to use another module in one module

Premise: only modules whose module name is an identifier and not a keyword can be used by other modules

Principle: import before use

Three. Module classification

System module ----- the python file provided in the python environment

Custom module ---- the py file created by the programmer

4, How to import modules
1)import Module name -----Import the specified module, which can be imported through'Module name.'Use the global variables of this module

2)from Module name import Variable 1,Variable 2,Variable 3,..... -----Import the specified module. After importing, you can directly use the corresponding variables

3)from Module name import * -----Import the specified module. After importing, you can directly use all global variables in the module

4)rename import Module name as New module name -----Rename module
        from Module name import Variable 1 as New variable name,Variable 2,Variable 3,..... -----Rename variable

eg:

# 1)
# import test
# print(test.a)  # 100
# print(test.b)  # True
# print(test.func1())  # ----- 100

# 2)
# from test import a, func1
#
# print(a)  # 100
# print(func1())  # ----- 100
# print(b)  # Error NameError: name 'b' is not defined
5, Principle of import module

When the code is executed into the import module, the system will automatically enter the import module and execute all the codes in the module
If the same module is imported multiple times in the same program, the code in the corresponding module will be executed only once

6, Select the data and functions that can be imported when importing the module
if __name__ == '__main__':
    Data that does not need to be imported

Code outside of if will be called

The code in if will not be executed

Tags: Python

Posted on Mon, 01 Nov 2021 12:16:36 -0400 by a1amattyj