

A150852


Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1), (1, 1, 0)}


0



1, 2, 8, 32, 140, 628, 2887, 13510, 63956, 305600, 1471081, 7120355, 34625821, 169011611, 827494683, 4062062757, 19983319943, 98490098421, 486190982884, 2403321492423, 11894085670659, 58924714771134, 292183102398301, 1449964171395540, 7200509777155409, 35779851763911854, 177890764792584154
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..26.
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.


MATHEMATICA

aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0  Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[1 + i, 1 + j, k, 1 + n] + aux[1 + i, 1 + j, 1 + k, 1 + n] + aux[1 + i, j, 1 + k, 1 + n] + aux[i, 1 + j, 1 + k, 1 + n] + aux[1 + i, j, k, 1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]


CROSSREFS

Sequence in context: A150850 A179469 A150851 * A150853 A150854 A150855
Adjacent sequences: A150849 A150850 A150851 * A150853 A150854 A150855


KEYWORD

nonn,walk


AUTHOR

Manuel Kauers, Nov 18 2008


STATUS

approved



