A self encoder for eliminating noise based on keras

primary coverage In this paper, we mainly introduce the implementation of the noise free self encoder based on keras. In fact, for a common autoencod...
primary coverage

In this paper, we mainly introduce the implementation of the noise free self encoder based on keras. In fact, for a common autoencode, simply speaking, there is a latent space to strengthen the input and output and represent the input vector. Therefore, the dimension of the input and output is the same, but the function of classification can be realized through autoencode, mainly in the network A different activation function is added to the last layer, and then the stack self encoder based on stack in 2016 is the upgraded version of DA. It is mainly to add multiple hidden layers in latent space. For these hidden layers, the corresponding front layer between layers is input to the back layer, and the back layer continues to code until the last layer. The simple schematic diagram can be as follows


Stack self encoder

Here is the simple code for implementation

# -*- coding: utf-8 -*- """ Created on Mon Dec 18 14:49:54 2017 @author: Administrator """ #! /usr/bin/python # -*- coding: utf8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import keras from keras.layers import Activation, Dense, Input from keras.layers import Conv2D, Flatten from keras.layers import Reshape, Conv2DTranspose from keras.models import Model from keras.layers import GaussianNoise from keras import backend as K from keras.datasets import mnist import numpy as np import matplotlib.pyplot as plt from PIL import Image from keras import regularizers import scipy.io as scio dataFile = 'endUse.mat' datadic = scio.loadmat(dataFile) data = datadic['Endmatrix'] data=data.T totalnumber=np.size(data,0) trainsplit=int(0.8*totalnumber) data_train=data[:trainsplit] data_test=data[trainsplit:] noise = np.random.normal(loc=0, scale=0.4, size=data_train.shape) data_train_noisy = data_train + noise noise = np.random.normal(loc=0, scale=0.4, size=data_test.shape) data_test_noisy = data_test + noise def contractive_autoencoder(data_train_noisy,data_train,data_test_noisy,data_test, lam=0.1): #data_train_noisy = data_train_noisy.reshape(data_train_noisy.shape[0], -1) M, N = data_train_noisy.shape N_hidden = 2000 N_batch = 128 inputs = Input(shape=(N,)) encoded = Dense(N_hidden, activation='relu', name='encoded')(inputs) outputs = Dense(N, activation='linear')(encoded) model = Model(input=inputs, output=outputs) def contractive_loss(y_pred, y_true): mse = K.mean(K.square(y_true - y_pred), axis=1) W = K.variable(value=model.get_layer('encoded').get_weights()[0]) # N x N_hidden W = K.transpose(W) # N_hidden x N h = model.get_layer('encoded').output dh = h * (1 - h) # N_batch x N_hidden # N_batch x N_hidden * N_hidden x 1 = N_batch x 1 contractive = lam * K.sum(dh**2 * K.sum(W**2, axis=1), axis=1) return mse + contractive model.compile(optimizer='adam', loss=contractive_loss) model.fit(data_train_noisy, data_train, validation_data=(data_test_noisy, data_test), epochs=100, batch_size=N_batch) return model, Model(input=inputs, output=encoded) model, representation = contractive_autoencoder(data_train_noisy,data_train,data_test_noisy,data_test)

In this case, mse is used to activate the function. Here's how it's written in keras

6 November 2019, 12:45 | Views: 7074

Add new comment

For adding a comment, please log in
or create account

0 comments