Flink's common Source and sink operations in stream processing

The source of flink on stream processing is basically the same as that on batch processing. There are four categories C...
Kafka basic command:
Use flink to consume kafka messages (it is not standardized, but you need to manually maintain the offset yourself):
The source of flink on stream processing is basically the same as that on batch processing. There are four categories
  1. Collection based source
  2. File based source
  3. Socket based source
  4. Custom source
Collection based source
import org.apache.flink.streaming.api.scala. import scala.collection.immutable. import scala.collection.mutable import scala.collection.mutable. object DataSource001 { def main(args: Array[String]): Unit = { val senv = StreamExecutionEnvironment.getExecutionEnvironment //0. Create datastream with element (fromelements) val ds0: DataStream[String] = senv.fromElements("spark", "flink") ds0.print() //1. Use Tuple to create DataStream(fromElements) val ds1: DataStream[(Int, String)] = senv.fromElements((1, "spark"), (2, "flink")) ds1.print() //2. Create DataStream with Array val ds2: DataStream[String] = senv.fromCollection(Array("spark", "flink")) ds2.print() //3. Create DataStream with ArrayBuffer val ds3: DataStream[String] = senv.fromCollection(ArrayBuffer("spark", "flink")) ds3.print() //4. Create DataStream with List val ds4: DataStream[String] = senv.fromCollection(List("spark", "flink")) ds4.print() //5. Create DataStream with List val ds5: DataStream[String] = senv.fromCollection(ListBuffer("spark", "flink")) ds5.print() //6. Create DataStream with Vector val ds6: DataStream[String] = senv.fromCollection(Vector("spark", "flink")) ds6.print() //7. Create DataStream with Queue val ds7: DataStream[String] = senv.fromCollection(Queue("spark", "flink")) ds7.print() //8. Create DataStream with Stack val ds8: DataStream[String] = senv.fromCollection(Stack("spark", "flink")) ds8.print() //9. Create DataStream with Stream (Stream is equivalent to lazy List to avoid generating unnecessary collection in intermediate process) val ds9: DataStream[String] = senv.fromCollection(Stream("spark", "flink")) ds9.print() //10. Create DataStream with Seq val ds10: DataStream[String] = senv.fromCollection(Seq("spark", "flink")) ds10.print() //11. Create datastream with Set (not supported) //val ds11: DataStream[String] = senv.fromCollection(Set("spark", "flink")) //ds11.print() //12. Create datastream with Iterable (not supported) //val ds12: DataStream[String] = senv.fromCollection(Iterable("spark", "flink")) //ds12.print() //13. Create DataStream with ArraySeq val ds13: DataStream[String] = senv.fromCollection(mutable.ArraySeq("spark", "flink")) ds13.print() //14. Create DataStream with ArrayStack val ds14: DataStream[String] = senv.fromCollection(mutable.ArrayStack("spark", "flink")) ds14.print() //15. Create datastream with Map (not supported) //val ds15: DataStream[(Int, String)] = senv.fromCollection(Map(1 -> "spark", 2 -> "flink")) //ds15.print() //16. Create DataStream with Range val ds16: DataStream[Int] = senv.fromCollection(Range(1, 9)) ds16.print() //17. Create DataStream with fromElements val ds17: DataStream[Long] = senv.generateSequence(1, 9) ds17.print() senv.execute(this.getClass.getName) } }
File based source
//TODO 2. File based source //0. Create a running environment val env = StreamExecutionEnvironment.getExecutionEnvironment //TODO 1. Read local file val text1 = env.readTextFile("data2.csv") text1.print() //TODO 2. Read hdfs file val text2 = env.readTextFile("hdfs://hadoop01:9000/input/flink/README.txt") text2.print() env.execute()
Socket based source
val source = env.socketTextStream("IP", PORT)
Custom source (take kafka as an example)

Kafka basic command:

  • View all topic s in the current server
bin/kafka-topics.sh --list --zookeeper hadoop01:2181
  • Create topic
bin/kafka-topics.sh --create --zookeeper hadoop01:2181 --replication-factor 1 --partitions 1 --topic test
  • Delete topic
sh bin/kafka-topics.sh --delete --zookeeper zk01:2181 --topic test

You need to set delete.topic.enable=true in server.properties. Otherwise, it's just to mark deletion or restart directly.

  • Sending messages through shell commands
sh bin/kafka-console-producer.sh --broker-list hadoop01:9092 --topic test
  • Consume messages through shell
bin/kafka-console-consumer.sh --zookeeper hadoop01:2181 --from-beginning --topic test1
  • View consumption location
bin/kafka-run-cla.ss.sh kafka.tools.ConsumerOffsetChecker --zookeeper zk01:2181 --group testGroup
  • View details of a Topic
bin/kafka-topics.sh --topic test --describe --zookeeper zk01:2181
  • Modify the number of partitions
kafka-topics.sh --zookeeper zk01 --alter --partitions 15 --topic utopic

Use flink to consume kafka messages (it is not standardized, but you need to manually maintain the offset yourself):

import java.util.Properties import org.apache.flink.streaming.api.scala. import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer09 import org.apache.flink.streaming.util.serialization.SimpleStringSchema import org.apache.flink.api.scala._ /** * Created by angel; */ object DataSource_kafka { def main(args: Array[String]): Unit = { //1 specify information about kafka data flow val zkCluster = "hadoop01,hadoop02,hadoop03:2181" val kafkaCluster = "hadoop01:9092,hadoop02:9092,hadoop03:9092" val kafkaTopicName = "test" //2. Create a flow processing environment val env = StreamExecutionEnvironment.getExecutionEnvironment //3. Create kafka data flow val properties = new Properties() properties.setProperty("bootstrap.servers", kafkaCluster) properties.setProperty("zookeeper.connect", zkCluster) properties.setProperty("group.id", kafkaTopicName) val kafka09 = new FlinkKafkaConsumer09[String](kafkaTopicName, new SimpleStringSchema(), properties) //4. Add data source addSource(kafka09) val text = env.addSource(kafka09).setParallelism(4) /** * test#CS#request http://b2c.csair.com/B2C40/query/jaxb/direct/query.ao?t=S&c1=HLN&c2=CTU&d1=2018-07-12&at=2&ct=2&inf=1#CS#POST#CS#application/x-www-form-urlencoded#CS#t=S&json={'adultnum':'1','arrcity':'NAY','childnum':'0','depcity':'KHH','flightdate':'2018-07-12','infantnum':'2'}#CS#http://b2c.csair.com/B2C40/modules/bookingnew/main/flightSelectDirect.html?t=R&c1=LZJ&c2=MZG&d1=2018-07-12&at=1&ct=2&inf=2#CS#123.235.193.25#CS#Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1#CS#2018-01-19T10:45:13:578+08:00#CS#106.86.65.18#CS#cookie * */ val values: DataStream[ProcessedData] = text.map{ line => var encrypted = line val values = encrypted.split("#CS#") val valuesLength = values.length var regionalRequest = if(valuesLength > 1) values(1) else "" val requestMethod = if (valuesLength > 2) values(2) else "" val contentType = if (valuesLength > 3) values(3) else "" //Data body submitted by Post val requestBody = if (valuesLength > 4) values(4) else "" //http_referrer val httpReferrer = if (valuesLength > 5) values(5) else "" //Client IP val remoteAddr = if (valuesLength > 6) values(6) else "" //Client UA val httpUserAgent = if (valuesLength > 7) values(7) else "" //ISO8610 format of server time val timeIso8601 = if (valuesLength > 8) values(8) else "" //server address val serverAddr = if (valuesLength > 9) values(9) else "" //Get the cookie string in the original information val cookiesStr = if (valuesLength > 10) values(10) else "" ProcessedData(regionalRequest, requestMethod, contentType, requestBody, httpReferrer, remoteAddr, httpUserAgent, timeIso8601, serverAddr, cookiesStr) } values.print() val remoteAddr: DataStream[String] = values.map(line => line.remoteAddr) remoteAddr.print() //5. Trigger operation env.execute("flink-kafka-wordcunt") } } //Save structured data case class ProcessedData(regionalRequest: String, requestMethod: String, contentType: String, requestBody: String, httpReferrer: String, remoteAddr: String, httpUserAgent: String, timeIso8601: String, serverAddr: String, cookiesStr: String )

7 May 2020, 10:54 | Views: 3763

Add new comment

For adding a comment, please log in
or create account

0 comments