R script reading summary Excel table data

It mainly uses xlsx and rJava package, opens Excel file, reads data of each table, and writes it to summary table. The following figure shows the ori...
code implementation
Complete code
Form attachment

It mainly uses xlsx and rJava package, opens Excel file, reads data of each table, and writes it to summary table.

The following figure shows the original data table before processing:

The following figure shows the processed data:

code implementation

Install & load the function implementation of the package. The installed.packages() function gets all installed packages to exclude installed packages. The install.packages() function installs the specified package. library() loads the incoming package.

loadLibrary <- function(pkgs) { uninstalledPkgs <- pkgs[!(pkgs %in% installed.packages()[, "Package"])] if (length(uninstalledPkgs)) { install.packages(uninstalledPkgs) } for (pkg in pkgs) { library(pkg, character.only = TRUE, quietly = TRUE) } }

Custom settings. It involves table file path, summary table name, etc.

setwd("/path/to/work/dir") # working directory fileName = "summary_sheet_demo.xlsx" # Processed form file summaryName = "Summary" # Summary sheet name summarySheet = FALSE # Object variable, ignored startRow = 2 # Operation start row in summary

Set up the CRAN source. The official default source may be slow, so it is important to choose a domestic source. Tsinghua CRAN source is selected here, for other references CRAN Mirrors.

options(repos = "https://mirrors.tuna.tsinghua.edu.cn/CRAN/")

Load dependent packages. The function to install the loading package written above is used.

loadLibrary(c("xlsx", "rJava"))

Open the worksheet. loadWorkbook() opens a table file with the specified path and loads it into the workbook object.

wb <- loadWorkbook(fileName)

Traverse Query & summarize data.

# Get all forms sheets <- getSheets(wb) # Loop through all tables to find the tables that need to be written for (sheet in sheets) { sheetName <- sheet$getSheetName() if (sheetName == summaryName) { summarySheet <- sheet } } if (summarySheet == FALSE) { stop(paste("surface:", summaryName, "not found")) } # Specify Date format (ignored here) # options(xlsx.date.format='yyyy/MM/dd') # Traverse all tables for (sheet in sheets) { # Filter out the table to be written sheetName <- sheet$getSheetName() if (sheetName == summaryName) { next } # Get the table [number of content rows] rowNum <- sheet$getLastRowNum() print(paste("Table name:", sheetName, "In total:", rowNum, "That's ok,", sep = " ")) # The read table content parameter colClasses specifies the type of each column (actually, the class / object that handles the column) data <- read.xlsx2(fileName, sheetName = sheetName, header = FALSE, startRow = 2, colClasses = c("character", "Date", "integer", "integer", rep("numeric", 2), "integer")) print(data) # Write the table contents to the summary table addDataFrame(data, summarySheet, col.names = FALSE, row.names = FALSE, startRow = startRow) # Cumulative row number startRow <- startRow + rowNum }

Write the object contents to a file to save.

saveWorkbook(wb, fileName)

Complete code

# Package load / install package loadLibrary <- function(pkgs) { uninstalledPkgs <- pkgs[!(pkgs %in% installed.packages()[, "Package"])] if (length(uninstalledPkgs)) { install.packages(uninstalledPkgs) } for (pkg in pkgs) { library(pkg, character.only = TRUE, quietly = TRUE) } } # Custom configuration setwd("/path/to/work/dir") # working directory fileName = "summary_sheet_demo.xlsx" # Processed form file summaryName = "Summary" # Summary sheet name summarySheet = FALSE # Object variable, ignored startRow = 2 # Operation start row in summary # Set CRAN options(repos = "https://mirrors.tuna.tsinghua.edu.cn/CRAN/") # Load dependency package loadLibrary(c("xlsx", "rJava")) # Open Excel table wb <- loadWorkbook(fileName) # Get all forms sheets <- getSheets(wb) # Loop through all tables to find the tables that need to be written for (sheet in sheets) { sheetName <- sheet$getSheetName() if (sheetName == summaryName) { summarySheet <- sheet } } if (summarySheet == FALSE) { stop(paste("surface:", summaryName, "not found")) } # Specify Date format (ignored here) # options(xlsx.date.format='yyyy/MM/dd') # Traverse all tables for (sheet in sheets) { # Filter out the table to be written sheetName <- sheet$getSheetName() if (sheetName == summaryName) { next } # Get the table [number of content rows] rowNum <- sheet$getLastRowNum() print(paste("Table name:", sheetName, "In total:", rowNum, "That's ok,", sep = " ")) # The read table content parameter colClasses specifies the type of each column (actually, the class / object that handles the column) data <- read.xlsx2(fileName, sheetName = sheetName, header = FALSE, startRow = 2, colClasses = c("character", "Date", "integer", "integer", rep("numeric", 2), "integer")) print(data) # Write the table contents to the summary table addDataFrame(data, summarySheet, col.names = FALSE, row.names = FALSE, startRow = startRow) # Cumulative row number startRow <- startRow + rowNum } # Finally, the object content needs to be written to the file saveWorkbook(wb, fileName)

2 December 2019, 21:25 | Views: 6906

Add new comment

For adding a comment, please log in
or create account

0 comments