"ZJOI2014" is brilliant

"ZJOI2014" is brilliant In fact, you don't have to build a crystal cube Because, the direction of luminescent crystal should enumerate ...

"ZJOI2014" is brilliant

In fact, you don't have to build a crystal cube

Because, the direction of luminescent crystal should enumerate once.

Just know which crystals are in each direction of the luminescent crystal.

For a luminescent crystal, the crystal label that connects it.

From the crystal bfs, if a crystal has been visited twice in the same steps, it must not be on a straight line in a certain direction (quite obviously).

The label of each point is the label of the first point to access it.

In this way, the crystal in each direction can be formed.

Time complexity \ (o(n a^3) \).

After that, enumerate each luminescent crystal, with complexity \ (o(6^n a) \).

#include<bits/stdc++.h> #define rep(q,a,b) for(int q=a,q##_end_=b;q<=q##_end_;++q) #define dep(q,a,b) for(int q=a,q##_end_=b;q>=q##_end_;--q) #define mem(a,b) memset(a,b,sizeof a ) #define debug(a) cerr<<#a<<' '<<a<<"___"<<endl using namespace std; void in(int &r) { static char c; r=0; while(c=getchar(),c<48); do r=(r<<1)+(r<<3)+(c^48); while(c=getchar(),c>47); } const int mn=70*70*70+100; int n; vector<int> son[mn]; vector<int> rt,ft[8][6]; int mk[mn]; int val[mn],que[mn],mark[mn]; bool is_used[mn]; int tot_val,Max,Min=1e9; void dfs(int x){ if(x==(int)rt.size()){ Max=max(Max,tot_val); Min=min(Min,tot_val); return; } vector<int> sta; rep(q,0,5){ sta.clear(); rep(w,0,(int)ft[x][q].size()-1){ int y=ft[x][q][w]; if(!is_used[y]){ sta.push_back(y); is_used[y]=1; tot_val+=val[y]; } } dfs(x+1); rep(w,0,(int)sta.size()-1)is_used[sta[w]]=0,tot_val-=val[sta[w]]; if(ft[x][q].size()==0)return; } } int main(){ freopen("glitter.in","r",stdin); freopen("glitter.out","w",stdout); in(n); char c; int r; rep(q,1,n*n*n){ in(val[q]); if(!val[q])rt.push_back(q); while(1){ r=0; while(c=getchar(),c<48); do r=(r<<1)+(r<<3)+(c^48); while(c=getchar(),c>47); son[q].push_back(r); if(c=='\n'||c=='\r')break; } } rep(q,0,(int)rt.size()-1){ int l=0,r=0; int now=rt[q]; mk[now]=-1; rep(w,0,(int)son[now].size()-1)mk[son[now][w]]=w+1,mark[son[now][w]]=1,que[++r]=son[now][w]; while(l<r){ int nw=que[++l]; rep(w,0,(int)son[nw].size()-1){ int to=son[nw][w]; if(mk[to]==0)mk[to]=mk[nw],mark[to]=mark[nw]+1,que[++r]=to; else if(mark[to]==mark[nw]+1)is_used[to]=1; } } rep(w,1,r){ if(!is_used[que[w]])ft[q][mk[que[w]]-1].push_back(que[w]); is_used[que[w]]=0; mk[que[w]]=0,mark[que[w]]=0; } mk[now]=0,mark[now]=0; } dfs(0); printf("%d %d\n",Min,Max); return 0; }

4 November 2019, 10:30 | Views: 8824

Add new comment

For adding a comment, please log in
or create account

0 comments